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Let (Z/2) ~0 denote the subgroup of  0 consisting of  the diagonal matrices; let 
MO(I)  ̂ ~0 denote the Thorn spectrum over B(Z/2)  ~. Thus MO(1) ̂ ~ represents the 
bordism theory ht, Z/2)®( - ) of  manifolds with stable normal bundle given a splitting 
as an ordered sum of  line bundles. Similarly let MU(I)  ̂ ® be the Thorn spectrum 
over B(Sl)  ®. 

In this note we prove: 

T h e o r e m  1. H,(MO(1)^~;  Z/2)  is a free (i.e. extended) comodule over the dual o f  
the Steenrod algebra A2,; hence MOO) ̂ ® splits as a wedge o f  (suspensions o f )  
Eilenberg-MacLane spectra H Z / 2 .  

T h e o r e m  2. H,(MU(1)^~;  Z/p)  is a free comodule over H ,  BPcAP,  f o r  any prime 
p; hence, since H,(MU(1)^~;  Z) is torsion free, MU(I)  ̂ ~ splits p-locally as a wedge 
o f  (suspensions o f )  Brown-Peterson spectra BP. 

The forgetful functor 

¢ : ht, Z/2)~( - ) ~ N , (  - ) 

is a surjection on the point-rings - this is because N, (p t . )  has a set of  algebra 
generators (real projective spaces and hypersurfaces thereof) lying in the image of  
¢~ - so Theorem 1 entails the following: 

Corollary. ¢, : ht, ZFz)=(X)--, N , ( X )  is surjective f o r  all spaces X. 

The second author would like to take the opportunity to apologise for his 
erroneous claim to exhibit an X contradicting this in [2]. R.E. Strong pointed out 
the error and gave an elegant proof  of  the corollary using the splitting principle. 
However this left open the question as to whether H,(MO(1)^~;  Z/2) was actually 
free over A 2. What makes the question hard is the lack of  any geometrically defined 
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product on MO(1) ̂ ~* possessing a unit (it has card{linear isometrics: R~*~)~®---, ~0"} 
such products which do not!) - this means that the Milnor-Moore theorem, for 
example, does not apply. We answer the question here using the theorem of Adams 
and Margolis [1] (or Moore and Peterson [4] in the complex case) together with 
some bare-handed algebra to show that these theorems apply. 

We do not know if the complex analogue of the corollary is true. To prove this it 
would suffice to find a set of  generators for U.(pt.) having stable normal bundles 
split into a sum of  complex line bundles. 

Proof of Theorem 1. Let M(k)* denote H*+k(MO(l)^k; Z/2) so that we have an 
inverse system 

~1 e2 e3 
M(I)*,  M(2)*, M(3)*, ... (A) 

in which each ei is surjective and the limit of the system is H*(MO(1)^**; Z /2 )=  
M(o,)* say. 

The key to Theorem 1 is the theorem of  Adams and Margolis [1]. To state this 
result let Pt(i) denote the element of Milnor's basis for A~' dual to g~ and let 
PT=Pt(2s); then if s<t,  (P7)2=0 and their theorem says that a connective (i.e. 
bounded below) A~-module M, say, is free if and only if 

H(M, PT)=O for all t ands<t .  

Proposition 3. Given any integer r>0 ,  there is an integer kr=kr(s, t) (s <t), such 
that H(M(k)*,P~) =0 in degrees <_r for  all k> kr. 

Given Proposition 3 it is an easy argument to show that H(M(oo)*,P~)= 0 for all 
t and s <  t (for example, by using the duality we sketch below). Thus, by Adams and 
Margolis, M(Q*)* is free, i.e. it has a subgroup B* such that the composite 

1 ® inclusion action 
A~®B* , A~®M(ao)* , M(oo)* (B) 

is an isomorphism. 
Give M(oo)* the inverse limit topology arising from (A) - where all the M(k)* 

(k< oo), are assumed to have the discrete topology, as is the ground field 7//2. Then 
H.(MO(1)^**; Z/2) = M(oo)., say, is the continuous dual of  M(ao)*. Now since A ~ is 
locally finite-dimensional, it follows that 

A~®M(o~)*=lim(A~®M(k)*) and A~®B*=li_m(A~®B(k)*) 

(where B(k)* = Im(B*-,M(k)*)). 
Hence the isomorphism (B) dualises to an isomorphism 

action, l (~) projection 
M(oo). , AZ,@M(oo), , A2 ® B .  

where 

(C) 

B,  is dual to B*; it is easy to verify that 'act ion, '  is the same as the 
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A2,-coaction on M(~) ,=H,(MO(1)^**;  Z/2)  so that (C) displays M(oo), as a free 
comodule. Thus Proposition 3 implies Theorem 1. 

Proof of Proposition 3. Let H*((~P®)k; Z/2)= Z/2[xl ,x2 . . . . .  xk] where xi gener- 
ates H l of  the ith factor. We may identify M(R)* with the ideal in Z/2[xl,x2 . . . . .  xn] 
generated by the Thorn class uk =XlX2 "" xk. 

To compute the action of  the Pt(i) on M(k)* we use the following easily verified 
formulae: 

Io" Pt(i)x= i= l, (l)(i) 
i>1 .  

(1)(ii) P,( i )xr=O 1 <_i<2 t. 

For any cohomology classes a, b 

Pt(i)(ab) = ~ (Pt ( j )a) (Pt ( i - j )b ) .  (2) 
i 

The proof  proceeds by induction on r for fixed s and t (with s < t )  and we shall 
prove the result with 

kr= 2s+ ½r(r + 1) + r2S(2 t -  1) 

=2s+  ~ ( j+2s(2  t - l ) )  
/ = l  

(which is not necessarily the sharpest possible estimate - certainly not if s = O, in 
which case P [  is a derivation and then the Ktinneth theorem gives precise results). 

First case: r = O. M(k)  ° is generated by uk and pS(uk) ~ 0 for k > 2 s so we are done. 

Inductive step. Assume the proposition for ( r -  1) with 

r - - I  

kr-I  =2s+ ~ ( j+2s(2 t -  1)). 
j = l  

Let y e M ( k )  r with 

k > k , = 2 s +  ~ ( j+2s(2 t -  1)) 
1=1 

and assume P~(y) =0. We may regard y as an element o f M ( q ) * ® M ( k -  q)* for any 
q : l < q < k .  

First claim. / f  q < r + 2s(2 t -  1) (so that k - q  >_ kr-1) then y is PT-homologous to an 
element y ~ M(k)* in which xl . . . . .  Xq occur only with exponent 1 or 2 t. 

Proof of claim. To make the method clear we first consider the case q = 1 and write 

y =x l y t  + ... +x~yn (Yl . . . . .  y n ~ M ( k -  I)*). 
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Let X~ym be the first non-zero term other than (possibly) xly~ or x?yz,. Now by 
properties (1) and (2) above the coefficient of  x~' in P~y is P~Ym, and from PtSy = 0 
we deduce that PSym = 0. Since m > 1, Ym has degree _<r-1 and so the inductive 
hypothesis gives us a Zm with P~zm =Y,~. Then y + Pf(x~'zm) has as its first non-zero 
term other than x lYt  or x~ty2, some term x~".Vm, with m ' >  m. Repeating the process 
gives the result. 

In the general case of  q_< r + 2s(2 t -  1), let xp be the first of  xl . . . . .  xq to occur with 
exponent other than 1 or 2 t in y, let x~ n be the lowest such power Of Xp occurring, and 
let the term of  least total degree in xl . . . . .  Xp in which x~' occurs be 

2 t 2 t m • 
x t "" xtxt+ I "'" xA_ I xlj y + similar terms (*) 

(where the 'similar terms' have the same total degree in x I . . . . .  Xp and all contain Xp 
with exponent m). 

2 t 2 t 
Now P~y'=O since this is the coefficient of  xl ""xtxt+z ...Xp_lX'~ in pSy; the 

inductive hypothesis therefore gives us a z'  with P~z '=y '  (since y '  has degree 
< r -  1). Then 

S t 2 t m r -  
Y+ P~(xl ""xtxt+l " " x p - l x t ,  z ) 

has zero as its term corresponding to y'.  Since the 'similar terms' in the expression 
(.)  are unchanged we can remove each of  them by repeating the process, and thus 
inductively obtain y of  the form claimed. 

Second claim. I f  q<_r + 2S(2 t -  I) then y is P~-homologous to an element o f  the 

fo rm 

soYo + sl Yl +""  + Sqyq ~ M(q)* ® M(k  - q)* 

where each Y.i ~ M ( k - q ) *  and sy denotes the monomial  symmetric polynomial con- 
. . 2 t 2 t 2 t 

tammg xl x~ ... xj xy+ l "" Xq. 

Proof of  claim. By the first claim we may assume y to be of  the form 

2 t 2 t . 
y = x I " "  X q Y o  + X I X 2 . . .  X q Y l ,  I + " .  + X I X  2 " "  X q  Y l , q  + h~gher t e r m s  

(where the 'higher terms' have higher total degree in xl . . . . .  Xq). 
Then 

2t  
Pt(2 s -  1)Y+ P~YI, t =0 (coefficient o f x l  x~...Xq in P~y), 
° . °  

2 t 
Pt(2 s -  1)y+ P~yl.q=O (coefficient of  x ix2""Xq in PTY), 

and thus 
P~(yl, l+ yl . j )=O for each 2<_j<_q. 

By the inductive hypothesis we deduce that there exist Zl,l with 

Yl, l+Yl, j=PSZl,  j for each 2<_j<q. 
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Then 
2 t 

y "[- P / ( X I X ~  t ' ' "  XqZl.2 " b " "  "[-X I X 2 " ' * X  q Zl, q) 

has the form 
2 t  t . 

X! ""  X q Y O +  (X! X 2 ""  Xq'{" ""  q- X I X  2 " "  X 2 )Yl . l  + higher terms 

that is, 

SoYo + s! Yl + higher terms. 

Suppose now that we have shown y to be PtS-homologous to an element of  the 
form 

SoYo + sl y j  + "" + S,n- lyre- ! + higher terms. 

The 'higher terms' of  least total degree in x! . . . . .  Xq have the form 

x Z t x 2 t . . .  X ~ X m +  I . . .  XqYm, l + . . .  + Xl  . . .  Xq_mX2qt_m+ l . . .  x2tym, n 

(where n = (mq)). 
By equating to zero the coefficient of  x~' ... X2m'Xm+ I " ' X q  in pSy  we obtain PtYm, ! 

as a function of  So, Yo . . . . .  Sm- 1, Y m -  l (just as we obtained PLY1, ! = Pt( 2 s -  1)Y0 in the 
first case). From the symmetry of  this function in x! . . . . .  Xq we deduce that 

$ $ 

P t  Ym, I . . . . .  P t  Ym, n 

and so 

P/(Ym.l+Ym, j ) = O  2<_j<_n. 

By the inductive hypothesis there exist zm, j with 

Ym, i+Ym. j=P/Zm,  j O<j<_n. 
Then 

y + P[(x~' 2~ 5, ~' " • "Xm_iXmXm+lXm+2 ""XqZm,2"~ ... arXl ""Xq_mXq_m+ l ""XqT.n.n) 

has the form 

SoYo + "" + SmYm + higher terms 

completing the inductive proof  of  the second  claim. 

Finally our inductive step in Proposition 3 follows easily from the second claim 
for it shows that y is P/ -homologous to an element of  N ( q ) * ® M ( l c - q ) * ,  where 

N(q)*  = H *  + q(MO(q); 7//2) C H *  +q(MO(l)Ak; 7//2) = M(q)*; 

since N(q)*  is free over A~ in degrees _<q, so is N ( q ) * ( ~ M ( k - q ) *  so that 
H ( N ( q ) * ® M ( k - q ) * P / ) = O  in degrees < _ q - 2 S ( 2 t - l )  (by the easy half of  the 
Adams-Margol is  theorem) and taking q = r +  2s(2 t -  1) we are done. 

The proof  of  Theorem 2 is quite analogous. In place of  the theorem of Adams 
and Margolis we use that of  Moore and Peterson [4] which states that with Pt s 
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defined as in the case p = 2 (i.e. Pt s is dual to ~ps) and if ;4p denotes the subalgebra 
of  A~ generated by the reduced powers, then an ~l~-module M is free if and only if 
H(M, Pt s) = 0 (where, if d :  M - - , M  has d p = 0, they define H(M,  d)  = ker d / i m  d p - l). 

Since M~= H*BP,  Theorem 2 follows f rom the mod p analogue of  Proposit ion 3 
and the duality outlined above, w h e n p  is odd. It is an easy exercise to check that the 

proof  of  Proposit ion 3 goes through in the same way for an appropriate  kr, 

replacing 2 by the odd prime p and Im(Pt s) by Im(ptS) p -  l. The assertion of  Theorem 
2 for p = 2 is easy using Theorem 1 and the squaring technique of  Liulevicius [3]. 

Remarks.  (a) It is unfortunate that we cannot give precise information about  the 
degree of  freeness of  M ( k ) *  over A~'. Even if we had the best possible kr, the results 
of  Adams and Margolis would only tell us that M ( k ) *  was free up to degree r - c r  
where Cr is a constant which is apparently hard to compute.  

(b) It would be nice to be able to work in homology throughout;  however, 
dualising [1] and [4] without the too-restrictive hypothesis o f  locally-finite 
dimension seems to be non-trivial. 
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