THE HOMOLOGY OF MO(1)^{∧∞} AND MU(1)^{∧∞}

R.D. ARTHAN and S.R. BULLETT

Department of Pure Mathematics, Queen Mary College, London, UK

Communicated by K.W. Gruenberg Received 30 October 1981

Let $(\mathbb{Z}/2)^{\infty}$ denote the subgroup of 0 consisting of the diagonal matrices; let $MO(1)^{\wedge\infty}$ denote the Thom spectrum over $B(\mathbb{Z}/2)^{\infty}$. Thus $MO(1)^{\wedge\infty}$ represents the bordism theory $h_*^{(\mathbb{Z}/2)^{\infty}}(-)$ of manifolds with stable normal bundle given a splitting as an ordered sum of line bundles. Similarly let $MU(1)^{\wedge\infty}$ be the Thom spectrum over $B(S^1)^{\infty}$.

In this note we prove:

Theorem 1. $H_*(MO(1)^{\infty}; \mathbb{Z}/2)$ is a free (i.e. extended) comodule over the dual of the Steenrod algebra A_*^2 ; hence $MO(1)^{\infty}$ splits as a wedge of (suspensions of) Eilenberg-MacLane spectra $H\mathbb{Z}/2$.

Theorem 2. $H_*(MU(1)^{\infty}; \mathbb{Z}/p)$ is a free comodule over $H_*BP \subset A_*^p$ for any prime p; hence, since $H_*(MU(1)^{\infty}; \mathbb{Z})$ is torsion free, $MU(1)^{\infty}$ splits p-locally as a wedge of (suspensions of) Brown-Peterson spectra BP.

The forgetful functor

 $\Phi:h_*^{(\mathbb{Z}/2)^\infty}(-)\!\rightarrow\!N_*(-)$

is a surjection on the point-rings – this is because $N_*(\text{pt.})$ has a set of algebra generators (real projective spaces and hypersurfaces thereof) lying in the image of Φ – so Theorem 1 entails the following:

Corollary. $\Phi: h_*^{(\mathbb{Z}/2)^{\infty}}(X) \to N_*(X)$ is surjective for all spaces X.

The second author would like to take the opportunity to apologise for his erroneous claim to exhibit an X contradicting this in [2]. R.E. Strong pointed out the error and gave an elegant proof of the corollary using the splitting principle. However this left open the question as to whether $H_*(MO(1)^{\wedge\infty}; \mathbb{Z}/2)$ was actually free over A_*^2 . What makes the question hard is the lack of any geometrically defined

product on MO(1)^{∞} possessing a unit (it has card{linear isometries: $\mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ } such products which do not!) – this means that the Milnor-Moore theorem, for example, does not apply. We answer the question here using the theorem of Adams and Margolis [1] (or Moore and Peterson [4] in the complex case) together with some bare-handed algebra to show that these theorems apply.

We do not know if the complex analogue of the corollary is true. To prove this it would suffice to find a set of generators for $U_*(\text{pt.})$ having stable normal bundles split into a sum of complex line bundles.

Proof of Theorem 1. Let $M(k)^*$ denote $H^{*+k}(MO(1)^{\wedge k}; \mathbb{Z}/2)$ so that we have an inverse system

$$M(1)^* \xleftarrow{\varepsilon_1} M(2)^* \xleftarrow{\varepsilon_2} M(3)^* \xleftarrow{\varepsilon_3} \cdots$$
(A)

in which each ε_i is surjective and the limit of the system is $H^*(MO(1)^{\infty}; \mathbb{Z}/2) = M(\infty)^*$ say.

The key to Theorem 1 is the theorem of Adams and Margolis [1]. To state this result let $P_t(i)$ denote the element of Milnor's basis for A_2^* dual to ξ_t^i and let $P_t^s = P_t(2^s)$; then if s < t, $(P_t^s)^2 = 0$ and their theorem says that a connective (i.e. bounded below) A_2^* -module M, say, is free if and only if

$$H(M, P_t^s) = 0$$
 for all t and $s < t$.

Proposition 3. Given any integer r > 0, there is an integer $k_r = k_r(s, t)$ (s < t), such that $H(M(k)^*, P_t^s) = 0$ in degrees $\leq r$ for all $k \geq k_r$.

Given Proposition 3 it is an easy argument to show that $H(M(\infty)^*, P_t^s) = 0$ for all t and s < t (for example, by using the duality we sketch below). Thus, by Adams and Margolis, $M(\infty)^*$ is free, i.e. it has a subgroup B^* such that the composite

$$A_2^* \otimes B^* \xrightarrow{1 \otimes \text{inclusion}} A_2^* \otimes M(\infty)^* \xrightarrow{\text{action}} M(\infty)^*$$
 (B)

is an isomorphism.

Give $M(\infty)^*$ the inverse limit topology arising from (A) – where all the $M(k)^*$ $(k < \infty)$, are assumed to have the discrete topology, as is the ground field $\mathbb{Z}/2$. Then $H_*(MO(1)^{\infty}; \mathbb{Z}/2) = M(\infty)_*$, say, is the continuous dual of $M(\infty)^*$. Now since A_2^* is locally finite-dimensional, it follows that

$$A_2^* \otimes M(\infty)^* \simeq \lim_{k \to \infty} (A_2^* \otimes M(k)^*)$$
 and $A_2^* \otimes B^* \simeq \lim_{k \to \infty} (A_2^* \otimes B(k)^*)$

(where $B(k)^* = \operatorname{Im}(B^* \rightarrow M(k)^*))$.

Hence the isomorphism (B) dualises to an isomorphism

$$M(\infty)_{*} \xrightarrow{\operatorname{action}_{*}} A_{*}^{2} \otimes M(\infty)_{*} \xrightarrow{1 \otimes \operatorname{projection}} A_{*}^{2} \otimes B_{*}$$
(C)

where B_* is dual to B^* ; it is easy to verify that 'action_{*}' is the same as the

 A^2_* -coaction on $M(\infty)_* \approx H_*(MO(1)^{\infty}; \mathbb{Z}/2)$ so that (C) displays $M(\infty)_*$ as a free comodule. Thus Proposition 3 implies Theorem 1.

Proof of Proposition 3. Let $H^*((\mathbb{R}P^{\infty})^k; \mathbb{Z}/2) = \mathbb{Z}/2[x_1, x_2, ..., x_k]$ where x_i generates H^1 of the *i*th factor. We may identify $M(k)^*$ with the ideal in $\mathbb{Z}/2[x_1, x_2, ..., x_n]$ generated by the Thom class $u_k = x_1 x_2 \cdots x_k$.

To compute the action of the $P_t(i)$ on $M(k)^*$ we use the following easily verified formulae:

$$P_t(i)x = \begin{cases} x^{2^t} & i = 1, \\ 0 & i > 1. \end{cases}$$
(1)(i)

$$P_t(i)x^{2^t} = 0 \quad 1 \le i < 2^t. \tag{1}(ii)$$

For any cohomology classes a, b

$$P_{t}(i)(ab) = \sum_{j} (P_{t}(j)a)(P_{t}(i-j)b).$$
⁽²⁾

The proof proceeds by induction on r for fixed s and t (with s < t) and we shall prove the result with

$$k_r = 2^s + \frac{1}{2}r(r+1) + r2^s(2^t - 1)$$
$$= 2^s + \sum_{j=1}^r (j + 2^s(2^t - 1))$$

(which is not necessarily the sharpest possible estimate – certainly not if s=0, in which case P_t^s is a derivation and then the Künneth theorem gives precise results).

First case: r = 0. $M(k)^0$ is generated by u_k and $P_t^s(u_k) \neq 0$ for $k \ge 2^s$ so we are done.

Inductive step. Assume the proposition for (r-1) with

$$k_{r-1} = 2^{s} + \sum_{j=1}^{r-1} (j+2^{s}(2^{t}-1))^{s}$$

Let $y \in M(k)'$ with

$$k \ge k_r = 2^s + \sum_{j=1}^r (j + 2^s(2^t - 1))$$

and assume $P_t^s(y) = 0$. We may regard y as an element of $M(q)^* \otimes M(k-q)^*$ for any $q: 1 \le q \le k$.

First claim. If $q \le r + 2^s(2^t - 1)$ (so that $k - q \ge k_{r-1}$) then y is P_t^s -homologous to an element $\mathfrak{g} \in M(k)^*$ in which x_1, \ldots, x_q occur only with exponent 1 or 2^t .

Proof of claim. To make the method clear we first consider the case q = 1 and write

$$y = x_1 y_1 + \dots + x_1^n y_n$$
 $(y_1, \dots, y_n \in M(k-1)^*).$

Let $x_1^m y_m$ be the first non-zero term other than (possibly) $x_1 y_1$ or $x_1^{2'} y_{2'}$. Now by properties (1) and (2) above the coefficient of x_1^m in $P_t^s y$ is $P_t^s y_m$, and from $P_t^s y = 0$ we deduce that $P_t^s y_m = 0$. Since m > 1, y_m has degree $\le r - 1$ and so the inductive hypothesis gives us a z_m with $P_t^s z_m = y_m$. Then $y + P_t^s (x_1^m z_m)$ has as its first non-zero term other than $x_1 y_1$ or $x_1^{2'} y_{2'}$ some term $x_1^{m'} y_{m'}$ with m' > m. Repeating the process gives the result.

In the general case of $q \le r + 2^s(2^t - 1)$, let x_p be the first of x_1, \ldots, x_q to occur with exponent other than 1 or 2^t in y, let x_p^m be the lowest such power of x_p occurring, and let the term of least total degree in x_1, \ldots, x_p in which x_p^m occurs be

$$x_1 \cdots x_l x_{l+1}^{2^l} \cdots x_{p-1}^{2^l} x_p^m y' + \text{similar terms}$$
(*)

(where the 'similar terms' have the same total degree in x_1, \ldots, x_p and all contain x_p with exponent m).

Now $P_t^s y'=0$ since this is the coefficient of $x_1 \cdots x_l x_{l+1}^{2^l} \cdots x_{p-1}^{2^l} x_p^m$ in $P_t^s y$; the inductive hypothesis therefore gives us a z' with $P_t^s z'=y'$ (since y' has degree $\leq r-1$). Then

$$y + P_{t}^{s}(x_{1} \cdots x_{l} x_{l+1}^{2^{t}} \cdots x_{P-1}^{2^{t}} x_{P}^{m} z')$$

has zero as its term corresponding to y'. Since the 'similar terms' in the expression (*) are unchanged we can remove each of them by repeating the process, and thus inductively obtain y of the form claimed.

Second claim. If $q \le r + 2^{s}(2^{t} - 1)$ then y is P_{t}^{s} -homologous to an element of the form

$$s_0y_0 + s_1y_1 + \dots + s_qy_q \in M(q)^* \otimes M(k-q)^*$$

where each $y_j \in M(k-q)^*$ and s_j denotes the monomial symmetric polynomial containing $x_1^{2'}x_2^{2'}\cdots x_j^{2'}x_{j+1}\cdots x_q$.

Proof of claim. By the *first claim* we may assume y to be of the form

$$y = x_1 \cdots x_q y_0 + x_1^{2t} x_2 \cdots x_q y_{1,1} + \dots + x_1 x_2 \cdots x_q^{2t} y_{1,q}$$
 + higher terms

(where the 'higher terms' have higher total degree in x_1, \ldots, x_q).

Then

$$P_t(2^s-1)y + P_t^s y_{1,1} = 0$$
 (coefficient of $x_1^{2^t} x_2 \cdots x_q$ in $P_t^s y$),

 $P_t(2^s-1)y + P_t^s y_{1,q} = 0$ (coefficient of $x_1 x_2 \cdots x_q^{2^t}$ in $P_t^s y$),

and thus

$$P_t^s(y_{1,1}+y_{1,j})=0$$
 for each $2 \le j \le q$.

By the inductive hypothesis we deduce that there exist $z_{1,i}$ with

$$y_{1,1} + y_{1,j} = P_t^s z_{1,j}$$
 for each $2 \le j \le q$.

Then

$$y + P_t^s(x_1 x_2^{2t} \cdots x_q z_{1,2} + \cdots + x_1 x_2 \cdots x_q^{2t} z_{1,q})$$

has the form

$$x_1 \cdots x_q y_0 + (x_1^{2'} x_2 \cdots x_q + \cdots + x_1 x_2 \cdots x_q^{2'}) y_{1,1} + \text{higher terms}$$

that is,

 $s_0 y_0 + s_1 y_1 +$ higher terms.

Suppose now that we have shown y to be P_t^s -homologous to an element of the form

$$s_0 y_0 + s_1 y_1 + \dots + s_{m-1} y_{m-1} + \text{higher terms}.$$

The 'higher terms' of least total degree in x_1, \ldots, x_q have the form

$$x_1^{2'} x_2^{2'} \cdots x_m^{2'} x_{m+1} \cdots x_q y_{m,1} + \cdots + x_1 \cdots x_{q-m} x_{q-m+1}^{2'} \cdots x_q^{2'} y_{m,n}$$

(where $n = \binom{q}{m}$).

By equating to zero the coefficient of $x_1^{2^t} \cdots x_m^{2^t} x_{m+1} \cdots x_q$ in $P_t^s y$ we obtain $P_t^s y_{m,1}$ as a function of $s_0, y_0, \dots, s_{m-1}, y_{m-1}$ (just as we obtained $P_t^s y_{1,1} = P_t(2^s - 1)y_0$ in the first case). From the symmetry of this function in x_1, \dots, x_q we deduce that

$$P_t^s y_{m,1} = \cdots = P_t^s y_{m,n}$$

and so

$$P_t^s(y_{m,1}+y_{m,j})=0 \quad 2 \le j \le n.$$

By the inductive hypothesis there exist $z_{m,j}$ with

$$y_{m,1} + y_{m,j} = P_t^s z_{m,j} \quad 0 \le j \le n.$$

Then

$$y + P_t^s(x_1^{2^t} \cdots x_{m-1}^{2^y} x_m x_{m+1}^{2^t} x_{m+2} \cdots x_q z_{m,2} + \dots + x_1 \cdots x_{q-m} x_{q-m+1}^{2^t} \cdots x_q^{2^t} z_{n,n})$$

has the form

$$s_0 y_0 + \dots + s_m y_m + \text{higher terms}$$

completing the inductive proof of the second claim.

Finally our inductive step in Proposition 3 follows easily from the second claim for it shows that y is P_t^s -homologous to an element of $N(q)^* \otimes M(k-q)^*$, where

$$N(q)^{*} = H^{*+q}(MO(q); \mathbb{Z}/2) \subset H^{*+q}(MO(1)^{\wedge k}; \mathbb{Z}/2) = M(q)^{*};$$

since $N(q)^*$ is free over A_2^* in degrees $\leq q$, so is $N(q)^* \otimes M(k-q)^*$ so that $H(N(q)^* \otimes M(k-q)^*, P_t^s) = 0$ in degrees $\leq q - 2^s(2^t - 1)$ (by the easy half of the Adams-Margolis theorem) and taking $q = r + 2^s(2^t - 1)$ we are done.

The proof of Theorem 2 is quite analogous. In place of the theorem of Adams and Margolis we use that of Moore and Peterson [4] which states that with P_t^s

defined as in the case p = 2 (i.e. P_i^s is dual to $\xi_i^{P^s}$) and if A_p^* denotes the subalgebra of A_p^* generated by the reduced powers, then an A_p^* -module M is free if and only if $H(M, P_i^s) = 0$ (where, if $d: M \to M$ has $d^p = 0$, they define $H(M, d) = \ker d/\operatorname{im} d^{p-1}$). Since $A_p^* = H^*BP$, Theorem 2 follows from the mod p analogue of Proposition 3 and the duality outlined above, when p is odd. It is an easy exercise to check that the proof of Proposition 3 goes through in the same way for an appropriate k_r , replacing 2 by the odd prime p and $\operatorname{Im}(P_i^s)$ by $\operatorname{Im}(P_i^s)^{p-1}$. The assertion of Theorem 2 for p = 2 is easy using Theorem 1 and the squaring technique of Liulevicius [3].

Remarks. (a) It is unfortunate that we cannot give precise information about the degree of freeness of $M(k)^*$ over A_2^* . Even if we had the best possible k_r , the results of Adams and Margolis would only tell us that $M(k)^*$ was free up to degree $r-c_r$ where c_r is a constant which is apparently hard to compute.

(b) It would be nice to be able to work in homology throughout; however, dualising [1] and [4] without the too-restrictive hypothesis of locally-finite dimension seems to be non-trivial.

References

- [1] J.F. Adams and H.R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971) 271-283.
- [2] S.R. Bullett, Permutations and braids in cobordism theory, Proc. London Math. Soc. (3) 38 (1979) 517-531.
- [3] A. Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964) 1-16.
- [4] J.C. Moore and F.P. Peterson, Modules over the Steenrod algebra, Topology 11 (1972) 387-395.