THE HOMOLOGY OF MO(1) ${ }^{\wedge \infty}$ AND MU(1) ${ }^{\wedge \infty}$

R.D. ARTHAN and S.R. BULLETT
Department of Pure Mathematics, Queen Mary College, London, UK

Communicated by K.W. Gruenberg
Received 30 October 1981

Let $(\mathbb{Z} / 2)^{\infty}$ denote the subgroup of 0 consisting of the diagonal matrices; let $\mathrm{MO}(1)^{\wedge \infty}$ denote the Thom spectrum over $B(\mathbb{Z} / 2)^{\infty}$. Thus $\mathrm{MO}(1)^{\wedge \infty}$ represents the bordism theory $h_{*}^{(\mathbb{Z} / 2)^{\infty}}(-)$ of manifolds with stable normal bundle given a splitting as an ordered sum of line bundles. Similarly let $M U(1)^{\wedge \infty}$ be the Thom spectrum over $B\left(S^{1}\right)^{\infty}$.

In this note we prove:
Theorem 1. $H_{*}\left(\mathrm{MO}(1)^{\wedge \infty} ; \mathbb{Z} / 2\right)$ is a free (i.e. extended) comodule over the dual of the Steenrod algebra A_{*}^{2}; hence $\mathrm{MO}(1)^{\wedge \infty}$ splits as a wedge of (suspensions of) Eilenberg-MacLane spectra $H \mathbb{Z} / 2$.

Theorem 2. $H_{*}\left(\mathrm{MU}(1)^{\wedge \infty} ; \mathbb{Z} / p\right)$ is a free comodule over $H_{*} B P \subset A_{*}^{p}$ for any prime p; hence, since $H_{*}\left(\mathrm{MU}(1)^{\wedge \infty} ; \mathbb{Z}\right)$ is torsion free, $\mathrm{MU}(1)^{\wedge \infty}$ splits p-locally as a wedge of (suspensions of) Brown-Peterson spectra BP.

The forgetful functor

$$
\Phi: h_{*}^{(\mathbb{Z} / 2)^{\infty}}(-) \rightarrow N_{*}(-)
$$

is a surjection on the point-rings - this is because N_{*} (pt.) has a set of algebra generators (real projective spaces and hypersurfaces thereof) lying in the image of $\boldsymbol{\Phi}$ - so Theorem 1 entails the following:

Corollary. $\Phi: h^{(\mathbb{Z} / 2)^{\infty}}(X) \rightarrow N_{*}(X)$ is surjective for all spaces X.
The second author would like to take the opportunity to apologise for his erroneous claim to exhibit an X contradicting this in [2]. R.E. Strong pointed out the error and gave an elegant proof of the corollary using the splitting principle. However this left open the question as to whether $H_{*}\left(\mathrm{MO}(1)^{\wedge \infty} ; \mathbb{Z} / 2\right)$ was actually free over A_{*}^{2}. What makes the question hard is the lack of any geometrically defined
product on $M O(1)^{\wedge \infty}$ possessing a unit (it has card $\left\{\right.$ linear isometries: $\left.\mathbb{R}^{\infty} \oplus \mathbb{R}^{\infty} \rightarrow \mathbb{R}^{\infty}\right\}$ such products which do not!) - this means that the Milnor-Moore theorem, for example, does not apply. We answer the question here using the theorem of Adams and Margolis [1] (or Moore and Peterson [4] in the complex case) together with some bare-handed algebra to show that these theorems apply.

We do not know if the complex analogue of the corollary is true. To prove this it would suffice to find a set of generators for $U_{*}(\mathrm{pt}$.$) having stable normal bundles$ split into a sum of complex line bundles.

Proof of Theorem 1. Let $M(k)^{*}$ denote $H^{*+k}\left(\mathrm{MO}(1)^{\wedge k} ; \mathbb{Z} / 2\right)$ so that we have an inverse system

$$
\begin{equation*}
M(1)^{*} \stackrel{\varepsilon_{1}}{\longleftarrow} M(2)^{*} \stackrel{\varepsilon_{2}}{\longleftarrow} M(3)^{*} \stackrel{\varepsilon_{3}}{\longleftarrow} \ldots \tag{A}
\end{equation*}
$$

in which each ε_{i} is surjective and the limit of the system is $H^{*}\left(\mathrm{MO}(1)^{\wedge \infty} ; \mathbb{Z} / 2\right)=$ $M(\infty)$ * say.

The key to Theorem 1 is the theorem of Adams and Margolis [1]. To state this result let $P_{f}(i)$ denote the element of Milnor's basis for A_{2}^{*} dual to ξ_{i}^{i} and let $P_{t}^{s}=P_{t}\left(2^{s}\right)$; then if $s<t,\left(P_{t}^{s}\right)^{2}=0$ and their theorem says that a connective (i.e. bounded below) A_{2}^{*}-module M, say, is free if and only if

$$
H\left(M, P_{t}^{s}\right)=0 \quad \text { for all } t \text { and } s<t
$$

Proposition 3. Given any integer $r>0$, there is an integer $k_{r}=k_{r}(s, t)(s<t)$, such that $H\left(M(k)^{*}, P_{t}^{s}\right)=0$ in degrees $\leq r$ for all $k \geq k_{r}$.

Given Proposition 3 it is an easy argument to show that $H\left(M(\infty)^{*}, P_{t}^{s}\right)=0$ for all t and $s<t$ (for example, by using the duality we sketch below). Thus, by Adams and Margolis, $M(\infty)^{*}$ is free, i.e. it has a subgroup B^{*} such that the composite

$$
\begin{equation*}
A_{2}^{*} \otimes B^{*} \xrightarrow{1 \otimes \text { inclusion }} A_{2}^{*} \otimes M(\infty)^{*} \xrightarrow{\text { action }} M(\infty)^{*} \tag{B}
\end{equation*}
$$

is an isomorphism.
Give $M(\infty)^{*}$ the inverse limit topology arising from (A) - where all the $M(k)^{*}$ $(k<\infty)$, are assumed to have the discrete topology, as is the ground field $\mathbb{Z} / 2$. Then $H_{*}\left(\mathrm{MO}(1)^{\wedge \infty} ; \mathbb{Z} / 2\right)=M(\infty)_{*}$, say, is the continuous dual of $M(\infty)^{*}$. Now since A_{2}^{*} is locally finite-dimensional, it follows that

$$
A_{2}^{*} \otimes M(\infty)^{*} \simeq \lim _{\leftarrow}\left(A_{2}^{*} \otimes M(k)^{*}\right) \quad \text { and } \quad A_{2}^{*} \otimes B^{*} \simeq \lim \left(A_{2}^{*} \otimes B(k)^{*}\right)
$$

(where $B(k)^{*}=\operatorname{Im}\left(B^{*} \rightarrow M(k)^{*}\right)$).
Hence the isomorphism (B) dualises to an isomorphism

$$
\begin{equation*}
M(\infty)_{*} \xrightarrow{\text { action }} A_{*}^{2} \otimes M(\infty)_{*} \xrightarrow{1 \otimes \text { projection }} A_{*}^{2} \otimes B_{*} \tag{C}
\end{equation*}
$$

where B_{*} is dual to B^{*}; it is easy to verify that 'action ${ }_{*}$ ' is the same as the
A_{*}^{2}-coaction on $M(\infty)_{*}=H_{*}\left(M O(1)^{\wedge \infty} ; \mathbb{Z} / 2\right)$ so that (C) displays $M(\infty)_{*}$ as a free comodule. Thus Proposition 3 implies Theorem 1.

Proof of Proposition 3. Let $H^{*}\left(\left(\mathbb{R} P^{\infty}\right)^{k} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ where x_{i} generates H^{1} of the i th factor. We may identify $M(k)^{*}$ with the ideal in $\mathbb{Z} / 2\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ generated by the Thom class $u_{k}=x_{1} x_{2} \cdots x_{k}$.

To compute the action of the $P_{t}(i)$ on $M(k)^{*}$ we use the following easily verified formulae:

$$
\begin{align*}
& P_{t}(i) x= \begin{cases}x^{2^{t}} & i=1 \\
0 & i>1 .\end{cases} \tag{1}\\
& P_{t}(i) x^{2^{t}}=0 \quad 1 \leq i<2^{t} . \tag{1}
\end{align*}
$$

For any cohomology classes a, b

$$
\begin{equation*}
P_{t}(i)(a b)=\sum_{j}\left(P_{t}(j) a\right)\left(P_{t}(i-j) b\right) . \tag{2}
\end{equation*}
$$

The proof proceeds by induction on r for fixed s and t (with $s<t$) and we shall prove the result with

$$
\begin{aligned}
k_{r} & =2^{s}+\frac{1}{2} r(r+1)+r 2^{s}\left(2^{t}-1\right) \\
& =2^{s}+\sum_{j=1}^{r}\left(j+2^{s}\left(2^{t}-1\right)\right)
\end{aligned}
$$

(which is not necessarily the sharpest possible estimate - certainly not if $s=0$, in which case P_{t}^{s} is a derivation and then the Künneth theorem gives precise results).

First case: $r=0 . M(k)^{0}$ is generated by u_{k} and $P_{t}^{s}\left(u_{k}\right) \neq 0$ for $k \geq 2^{s}$ so we are done.
Inductive step. Assume the proposition for $(r-1)$ with

$$
k_{r-1}=2^{s}+\sum_{j=1}^{r-1}\left(j+2^{s}\left(2^{t}-1\right)\right)
$$

Let $y \in M(k)^{r}$ with

$$
k \geq k_{r}=2^{s}+\sum_{j=1}^{r}\left(j+2^{s}\left(2^{t}-1\right)\right)
$$

and assume $P_{f}^{s}(y)=0$. We may regard y as an element of $M(q)^{*} \otimes M(k-q)^{*}$ for any $q: 1 \leq q \leq k$.

First claim. If $q \leq r+2^{s}\left(2^{t}-1\right)$ (so that $k-q \geq k_{r-1}$) then y is P_{t}^{s}-homologous to an element $y \in M(k)^{*}$ in which x_{1}, \ldots, x_{q} occur only with exponent 1 or 2^{t}.

Proof of claim. To make the method clear we first consider the case $q=1$ and write

$$
y=x_{1} y_{1}+\cdots+x_{1}^{n} y_{n} \quad\left(y_{1}, \ldots, y_{n} \in M(k-1)^{*}\right)
$$

Let $x_{1}^{m} y_{m}$ be the first non-zero term other than (possibly) $x_{1} y_{1}$ or $x_{1}^{2^{t}} y_{2^{t}}$. Now by properties (1) and (2) above the coefficient of x_{1}^{m} in $P_{t}^{s} y$ is $P_{t}^{s} y_{m}$, and from $P_{t}^{s} y=0$ we deduce that $P_{t}^{s} y_{m}=0$. Since $m>1, y_{m}$ has degree $\leq r-1$ and so the inductive hypothesis gives us a z_{m} with $P_{t}^{s} z_{m}=y_{m}$. Then $y+P_{t}^{s}\left(x_{1}^{m} z_{m}\right)$ has as its first non-zero term other than $x_{1} y_{1}$ or $x_{1}^{2^{t}} y_{2^{t}}$ some term $x_{1}^{m^{\prime}} y_{m^{\prime}}$ with $m^{\prime}>m$. Repeating the process gives the result.

In the general case of $q \leq r+2^{s}\left(2^{t}-1\right)$, let x_{p} be the first of x_{1}, \ldots, x_{q} to occur with exponent other than 1 or 2^{\prime} in y, let x_{p}^{m} be the lowest such power of x_{p} occurring, and let the term of least total degree in x_{1}, \ldots, x_{p} in which x_{p}^{m} occurs be

$$
\begin{equation*}
x_{1} \cdots x_{l} x_{l+1}^{2^{t}} \cdots x_{p-1}^{2^{t}} x_{p}^{m} y^{\prime}+\text { similar terms } \tag{*}
\end{equation*}
$$

(where the 'similar terms' have the same total degree in x_{1}, \ldots, x_{p} and all contain x_{p} with exponent m).

Now $P_{t}^{s} y^{\prime}=0$ since this is the coefficient of $x_{1} \cdots x_{l} x_{l+1}^{2^{t}} \cdots x_{p-1}^{2^{t}} x_{p}^{m}$ in $P_{t}^{s} y$; the inductive hypothesis therefore gives us a z^{\prime} with $P_{t}^{s} z^{\prime}=y^{\prime}$ (since y^{\prime} has degree $\leq r-1$). Then

$$
y+P_{l}^{s}\left(x_{1} \cdots x_{l} x_{l+1}^{2^{t}} \cdots x_{P-1}^{2 t} x_{P}^{m} z^{\prime}\right)
$$

has zero as its term corresponding to y^{\prime}. Since the 'similar terms' in the expression (*) are unchanged we can remove each of them by repeating the process, and thus inductively obtain y of the form claimed.

Second claim. If $q \leq r+2^{s}\left(2^{t}-1\right)$ then y is P_{t}^{s}-homologous to an element of the form

$$
s_{0} y_{0}+s_{1} y_{1}+\cdots+s_{q} y_{q} \in M(q)^{*} \otimes M(k-q)^{*}
$$

where each $y_{j} \in M(k-q)^{*}$ and s_{j} denotes the monomial symmetric polynomial containing $x_{1}^{2^{t}} x_{2}^{2^{f}} \cdots x_{j}^{2^{t}} x_{j+1} \cdots x_{q}$.

Proof of claim. By the first claim we may assume y to be of the form

$$
y=x_{1} \cdots x_{q} y_{0}+x_{1}^{2 t} x_{2} \cdots x_{q} y_{1,1}+\cdots+x_{1} x_{2} \cdots x_{q}^{2 t} y_{1, q}+\text { higher terms }
$$

(where the 'higher terms' have higher total degree in x_{1}, \ldots, x_{q}).
Then

$$
\begin{array}{ll}
P_{t}\left(2^{s}-1\right) y+P_{t}^{s} y_{1,1}=0 & \text { (coefficient of } x_{1}^{2^{t}} x_{2} \cdots x_{q} \text { in } P_{t}^{s} y \text {), } \\
\cdots & \\
P_{t}\left(2^{s}-1\right) y+P_{t}^{s} y_{1, q}=0 & \text { (coefficient of } x_{1} x_{2} \cdots x_{q}^{2^{z}} \text { in } P_{t}^{s} y \text {), }
\end{array}
$$

and thus

$$
P_{t}^{s}\left(y_{1,1}+y_{1, j}\right)=0 \quad \text { for each } 2 \leq j \leq q
$$

By the inductive hypothesis we deduce that there exist $z_{1, j}$ with

$$
y_{1,1}+y_{1, j}=P_{t}^{s} z_{1, j} \quad \text { for each } 2 \leq j \leq q
$$

Then

$$
y+P_{t}^{s}\left(x_{1} x_{2}^{2^{t}} \cdots x_{q} z_{1,2}+\cdots+x_{1} x_{2} \cdots x_{q}^{2 t} z_{1, q}\right)
$$

has the form

$$
x_{1} \cdots x_{q} y_{0}+\left(x_{1}^{2^{t}} x_{2} \cdots x_{q}+\cdots+x_{1} x_{2} \cdots x_{q}^{2^{t}}\right) y_{1,1}+\text { higher terms }
$$

that is,

$$
s_{0} y_{0}+s_{1} y_{1}+\text { higher terms }
$$

Suppose now that we have shown y to be P_{f}^{s}-homologous to an element of the form

$$
s_{0} y_{0}+s_{1} y_{1}+\cdots+s_{m-1} y_{m-1}+\text { higher terms. }
$$

The 'higher terms' of least total degree in x_{1}, \ldots, x_{q} have the form

$$
x_{1}^{2^{t}} x_{2}^{2^{t}} \cdots x_{m}^{2^{t}} x_{m+1} \cdots x_{q} y_{m, 1}+\cdots+x_{1} \cdots x_{q-m} x_{q-m+1}^{2^{t}} \cdots x_{q}^{2^{t}} y_{m, n}
$$

(where $n=\binom{q}{m}$).
By equating to zero the coefficient of $x_{1}^{2^{t}} \cdots x_{m}^{2^{t}} x_{m+1} \cdots x_{q}$ in $P_{t}^{s} y$ we obtain $P_{t}^{s} y_{m, 1}$ as a function of $s_{0}, y_{0}, \ldots, s_{m-1}, y_{m-1}$ (just as we obtained $P_{t}^{s} y_{1,1}=P_{t}\left(2^{s}-1\right) y_{0}$ in the first case). From the symmetry of this function in x_{1}, \ldots, x_{q} we deduce that

$$
P_{t}^{s} y_{m, 1}=\cdots=P_{t}^{s} y_{m, n}
$$

and so

$$
P_{f}^{s}\left(y_{m, 1}+y_{m, j}\right)=0 \quad 2 \leq j \leq n .
$$

By the inductive hypothesis there exist $z_{m, j}$ with

$$
y_{m, 1}+y_{m, j}=P_{t}^{s} z_{m, j} \quad 0 \leq j \leq n .
$$

Then

$$
y+P_{t}^{s}\left(x_{1}^{2^{t}} \cdots x_{m-1}^{2 y} x_{m} x_{m+1}^{2^{t}} x_{m+2} \cdots x_{q} z_{m, 2}+\cdots+x_{1} \cdots x_{q-m} x_{q-m+1}^{2^{t}} \cdots x_{q}^{2^{t}} z_{n, n}\right)
$$

has the form

$$
s_{0} y_{0}+\cdots+s_{m} y_{m}+\text { higher terms }
$$

completing the inductive proof of the second claim.
Finally our inductive step in Proposition 3 follows easily from the second claim for it shows that y is P_{t}^{s}-homologous to an element of $N(q)^{*} \otimes M(k-q)^{*}$, where

$$
N(q)^{*}=H^{*+q}(\mathrm{MO}(q) ; \mathbb{Z} / 2) \subset H^{*+q}\left(\mathrm{MO}(1)^{\wedge k} ; \mathbb{Z} / 2\right)=M(q)^{*} ;
$$

since $N(q)^{*}$ is free over A_{2}^{*} in degrees $\leq q$, so is $N(q)^{*} \otimes M(k-q)^{*}$ so that $H\left(N(q)^{*} \otimes M(k-q)^{*}, P_{t}^{s}\right)=0$ in degrees $\leq q-2^{s}\left(2^{t}-1\right)$ (by the easy half of the Adams-Margolis theorem) and taking $q=r+2^{s}\left(2^{t}-1\right)$ we are done.

The proof of Theorem 2 is quite analogous. In place of the theorem of Adams and Margolis we use that of Moore and Peterson [4] which states that with P_{f}^{s}
defined as in the case $p=2$ (i.e. P_{t}^{s} is dual to $\xi_{t}^{P s}$) and if A_{p}^{*} denotes the subalgebra of A_{ρ}^{*} generated by the reduced powers, then an ' A_{p}^{*}-module M is free if and only if $H\left(M, P_{t}^{S}\right)=0$ (where, if $d: M \rightarrow M$ has $d^{p}=0$, they define $H(M, d)=\operatorname{ker} d /$ im $^{p-1}$). Since ${ }^{\prime} A_{p}^{*}=H^{*} \mathrm{BP}$, Theorem 2 follows from the $\bmod p$ analogue of Proposition 3 and the duality outlined above, when p is odd. It is an easy exercise to check that the proof of Proposition 3 goes through in the same way for an appropriate k_{r}, replacing 2 by the odd prime p and $\operatorname{Im}\left(P_{t}^{s}\right)$ by $\operatorname{Im}\left(P_{t}^{s}\right)^{p-1}$. The assertion of Theorem 2 for $p=2$ is easy using Theorem 1 and the squaring technique of Liulevicius [3].

Remarks. (a) It is unfortunate that we cannot give precise information about the degree of freeness of $M(k)^{*}$ over A_{2}^{*}. Even if we had the best possible k_{r}, the results of Adams and Margolis would only tell us that $M(k)^{*}$ was free up to degree $r-c_{r}$ where c_{r} is a constant which is apparently hard to compute.
(b) It would be nice to be able to work in homology throughout; however, dualising [1] and [4] without the too-restrictive hypothesis of locally-finite dimension seems to be non-trivial.

References

[1] J.F. Adams and H.R. Margolis, Modules over the Steenrod algebra, Topology 10 (1971) 271-283.
[2] S.R. Bullett, Permutations and braids in cobordism theory, Proc. London Math. Soc. (3) 38 (1979) 517-531.
[3] A. Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964) 1-16.
[4] J.C. Moore and F.P. Peterson, Modules over the Steenrod algebra, Topology 11 (1972) 387-395.

